THE ROLE OF THE MUSIC TO LEARN GEOMETRICAL TRANSFORMATIONS

Daniela Galante

Abstract
This research studies the interaction among the following contexts: natural language, geometrical language and musical language and it can provide new instruments to accord didactical situations and for a deeper understanding of communication processes. It springs from the consideration that the geometrical transformations are usually used in the compositional processes and the “role of the music to learn geometrical transformations” is actually a new study. In the field of the theory of situations by G. Brousseau (1986) we can assume to be in front of a learning teaching-situation including non-teaching situation as the teacher of musical instruments, while transmitting the knowledge of musical language (theoretical-practical) didn’t have the intention to transmit the geometrical transformation.

KEY WORDS: geometrical transformations, compositional process, mathematics, music, theory of situations.

INTRODUCTION
This article describes a part of the experimental work done for my doctoral thesis.¹ The relationship between mathematics and music has far fetched roots and geometrical transformations have played an important role and for certain aspects essential in the development of the language of western music (B. Scimemi, 1997). The aim of this research is to verify if the constant study of a musical instrument creates unconscious potentialities which are translated into strategies and methodologies for the solution of problems related to isometries. In fact, among the principal functions that the study of music is able to perform, besides the mere knowledge function, the linguistic-communicative function, the cultural, critical, aesthetical and affective function, a cognitive one is recorded because music exercises and develops the capabilities of thought: the productive-imaginative thought in the first place (in the activities of sound production) but also the analytical, logical and inferring thought (in the activities of reflection and interpretation). This experimental research is based on a comparison between secondary school students that study music at a conservatoire and secondary school students that don’t study music at a conservatoire but which, anyway, have a basic knowledge theoretical-musical. This research has focused on spontaneous conceptions concerning geometrical transformations in general and their connection to music. The didactical experimentation was effected at Liceo Statale “Regina Margherita” of Palermo where two different samples of students were chosen:

Students of a music-oriented section of the same school which is connected to the state music conservatoire “Vincenzo Bellini” of Palermo. Number of students involved 70 between 14 and 16 years of age.

Students of a social- psychological-pedagogical section of the same school: number of students involved 70 between 14 and 16 years of age.

On the basis of these considerations the two following hypotheses of research were formulated:

H1 In musicians students (music liceo-conservatoire) the constant study of a musical instrument creates unconscious potentialities which are translated into strategies and methodologies for the solution of problems concerning isometries differently from non musicians students (pedagogical liceo).

¹ The relationship between mathematics and music has far fetched roots and geometrical transformations have played an important role and for certain aspects essential in the development of the language of western music (B. Scimemi, 1997).
H2 Students possessing a knowledge of the musical rhythmic structures have a greater ability in recognizing the rhythm of geometrical forms for the construction of objects in comparison with those who do not have such knowledge.

METHODOLOGY AND THEORETICAL REFERENCE
The study of situations/problem gets into the theory of didactical situations by G. Brousseau.
The experimental stages are:
- Formulation of the didactical problem;
- Formulation of the objective of the research;
- A priori analysis of the problem/situation which should take into consideration
 - The epistemological representation of both mathematical and musical concepts;
 - The historical-epistemological representation of the same concepts (variations which have interfered in the course of time);
 - The foreseeable behaviours of students towards the situation/problem.
- Research hypothesis
- Construction of the instruments for the falsification of hypotheses which consists in devising of an experimental apparatus through the preparation of:
 - Questionnaires;
 - Interviews to couples with the task of writing their common considerations written down after a common agreement (registration of interview protocols).
- Analysis of experimental data: correlation of experimental data in function of an a priori analysis.
 - Quantitative analysis about the problems of the questionnaires
 - Application of:
 - Descriptive statistics;
 - Factorial analysis with the help of software SPSS 9.0 and others;
 - Qualitative analysis of the related protocols of the interviews of couples.
- Documentation and communication of the results of the research.

This research has focused on spontaneous conceptions concerning geometrical transformations in general and their connection to music. The didactical experimentation was effected at Liceo Statale “Regina Margherita” of Palermo where two different samples of students were chosen:
- Students of a music-oriented section of the same school which is connected to the state music conservatoire “Vincenzo Bellini” of Palermo. Number of students involved 70 between 14 and 16 years of age.
- Students of a social- psychological-pedagogical section of the same school: number of students involved 70 between 14 and 16 years of age.

THE TESTING
To verify the research hypotheses I proposed four sets of questions to both samples examined: the first two are about classical exercises on geometrical transformations present in any textbook for the first two years of upper secondary school; the third one is a problem regarding the reconstruction of a mosaic through the identification and iteration of geometrical figures and finally a last set of exercises regarding the application of the geometrical transformations in melodic tune bits. I would like to concentrate my conclusions above all on the pupils’ behaviour adopted towards the last set of questions. It is to be précised that both samples hadn’t yet carried out in the classroom the study of geometrical transformations and this allowed me to pick their spontaneous conceptions on the subject. The set of questions proposed is the following one:
Let’s consider a plane \((x, y)\) and put the time on the \(x\) axe, which corresponds to a sequence of beats which have constant intervals (for example those ones produced by a metronome) and on the \(y\) axe the height of sound from the lowest to the highest. In this way any melody can be represented by a law \(f\) so that \(y = f(x)\). After that let’s choose as unit of measurement the second and match it to the musical crotchet figure for the \(x\) axe and the semitone\(^4\) tempered for the \(y\) axe; in this way we can have the graphic representation through little squares which simultaneously indicate the duration of each sound that is how they flow through time (on the \(x\) axe) and the height they have according to a tempered scale (on the \(y\) axe). Moreover, in musical writing notes written on the stave receive their names and indicate their height thanks to the use of the clefs\(^5\): for example to the treble clef corresponds the \(G\) note in the second line of the stave.

As consequence, if we consider as starting point of our system of reference, that is \(y = 0\), the height of the correspondent sound to a \(G\), the following melody:

\[
\begin{array}{cccc}
\text{♩} & \text{♩} & \text{♩} & \text{♩} \\
\end{array}
\]

Is represented in a Cartesian plane in the following way:

\[
\begin{array}{cccc}
\text{♩} & \text{♩} & \text{♩} & \text{♩} \\
\end{array}
\]

On the basis of these suggestions try to complete the following charts.

A) In the following Cartesian plane you see the original melody represented.
Draw, in the same Cartesian plane, this melodic tune bit:
Identify if there is a translation or a reflection of the original melody in relation to the \(x\) or \(y\) axe or to the origin of the axes. Give reasons for your answer.

B) In the following Cartesian plane you see the original melody represented.
Draw, in the same Cartesian plane, this melodic tune bit:
Identify if there is a translation or a reflection of the original melody in relation to the \(x\) or \(y\) axe or to the origin of the axes. Give reasons for your answer.

C) In the following Cartesian plane you see the original melody represented.
Draw, in the same Cartesian plane, this melodic tune bit:
Identify if there is a translation or a reflection of the original melody in relation to the \(x\) or \(y\) axe or to the origin of the axes. Give reasons for your answer.

D) In the following Cartesian plane you see the original melody represented.
Draw, in the same Cartesian plane, this melodic tune bit:
Identify if there is a translation or a reflection of the original melody in relation to the \(x\) or \(y\) axe or to the origin of the axes. Give reasons for your answer.
E) In the following Cartesian plane you see the original melody represented.
Draw, in the same Cartesian plane, this melodic tune bit:
Identify if there is a translation or a reflection of the original melody in relation to the x or y axe or to the origin of the axes. Give reasons for your answer.

ANALYSIS OF DATA
The set of questions was met with great interest and enthusiasm by both samples of pupils because they were made curious by the matching of geometrical transformation with music. The students who have elementary music knowledge\(^5\) preferred to look for solutions in the field of music rather than in that of geometry, for example in the first exercise they said there was a translation because there is a pause. The sample of the musician students, in particular, used the term transposition to indicate the translation because in music translating a melody means moving it in time and height, therefore these students identified correctly the term transposition as a synonym of translation. In a double-entry pupils-strategies chart, for each student I have indicated with value 1 the strategies used and with value 0 the unapplied strategies. The collected data were analyzed in a quantitative way, using the implying analysis of the variables of Regis Gras by means of the Chic 2004 software. Observing the following Chart of Similarities regrouping the two samples examined and analyzing all the data collected from the two samples, four typologies of main strategies emerge:

• Identifies the translation in relation to the x axe and the translation in relation to the y axe (i.e. answers the A) and B) questions correctly) but confuses the concept of translation with reflection in C) and D) questions although answers the E) question correctly.
• Identifies the reflection in relation to the x axe and the reflection in relation to the y axe (i.e. answers the C) and D) questions correctly) but confuses the concept of translation with reflection in A) and B) questions.
• Draws the chart but does not say if there is a reflection or a translation;
• Does not draw the chart of the tune bit but affirms there is a reflection

From this first quantitative analysis I have stressed that in general a concept mistake is present between the terms translation and reflection both for musicians and non musicians.

To trace possible different behaviours I analyzed both samples separately and from the analysis of the following chart of similarities came out that the non-musicians sample chose three typologies of main strategies:
• Identifies the translation in relation to the x axe (4A1) and the reflection in relation to the y axe (4D1), but considers the other charts as identities, that is neither translation nor reflection;
• Identifies the translation in relation to the y axe (4B1) and the reflection in relation to the x axe (4D1) and the reflection in relation to the origin (4E1) and is anyhow able to draw the chart but confuses the concept of translation with reflection;
• Does not draw the chart of the tune bit but affirms there is a translation. From the analysis of the chart of similarities of the musicians sample five typologies of main strategies emerged:

- Identifies the translation in relation to the x axe (4A1), the translation in relation to the y axe (4B1), the reflection in relation to the x axe (4C1) and the reflection in relation to the origin and is anyhow able to draw the chart but confuses the concept of translation with reflection;
- Always confuses the concept of translation with reflection;
- Confuses the concept of translation with reflection but is able to identify the reflection in relation to the y axe;
- Draws the chart but does not say if there is a reflection or a translation;
- Does not draw the chart of the tune bit but affirms there is a reflection.

Since the musicians sample is formed both by instrumentalists (winds and strings) and pianists I analyzed the sub-sample formed by pianists only and from the analysis of the following chart of similarities we can see that they chose three typologies of main strategies:

- Identifies the translation in relation to the x axe (4A1), the translation in relation to the y axe (4B1), the reflection in relation to the x axe (4C1), the reflection in relation to the y axe (4D1) and the reflection in relation to the origin (4E1) but confuses the concept of translation with reflection;
- not draw the chart of the tune bit but affirms there is a reflection or a translation but confuses the concept of translation with reflection;
- Draws the chart but does not say if there is a reflection or a translation.

CONCLUSION
From the analysis of the answers given to the set of questions proposed I have been able to find out a different behaviour, between the two samples taken into consideration, in facing the solution of problems concerning the geometrical transformations. In general, both for musician students and non-musician ones, a concept mistake between the terms translation and reflection is present (which we can hypothesize is a “misconcept”) and this is found also in the first two sets of strictly geometrical questions. From a quality and quantity analysis of the sub-group of pianists has come out that the “misconcept” concerning the translation-reflection decoding is less present and this is due to the characteristics of the piano. In fact, it is an instrument which naturally obliges the performer to use both hands symmetrically effecting both translations and reflections which are learnt in an unconscious way through the neuro-tendinous receptors of the upper limbs. Besides the reading of the score takes place in a polyphonic way and this helps the global vision and perception of the musical language, differently from other musical instruments (winds and strings) which, being monodic, develop in the pupil a vision and perception of the musical language of a punctual type, i.e. as a linked sequence of sounds, which excludes the understanding of the organizational criteria of the sound material. In the field of the theory of situations by G. Brousseau we can assume to be in front of a learning teaching-situation including non-teaching situation. In fact, we have the learning teaching-situation in the teacher’s wish (mathematics or music) to transmit the specific
knowledge of the discipline (geometrical transformation or musical instrument’s technique and repertoire); at the same time the student passes from a knowledge to another; simultaneously, we have a non-teaching situation, because the teacher, transmitting the geometrical situation knowledge didn’t have the intention to transmit the knowledge relative to the musical composition technique, and, vice versa, the teacher of musical instruments, while transmitting the knowledge of musical language (theoretical-practical) didn’t have the intention to transmit the geometrical transformation. Indeed, along students’ educational teaching process, the two disciplines knowledge are always transmitted separately, clashing with the strong link they have. Theoretical-experimental research in this field might in the future allow a curriculum organization aware of mathematics of music in music high schools and in music conservatories. Finally, we can affirm that with the music’s help it’s possible, not only to see the possible applications of the geometrical transformations, but we can also hear the effect these could have on a melody; this, in my opinion, makes the study of geometry definitely more fascinating. Vice versa the knowledge of geometrical transformations allows to musicians to understand the deeper aspects of compositional process used for ages by composers in the different musical field.

NOTES

2. The epistemological and historical – epistemological reflections are part of the thesis work, they will be taken into account according to the discourse context of this treatment.
3. The test build with tunes bit is completely invented and elaborate by Daniela Galante.
4. It’s the distance between any sound of the tempered scale and its immediate subsequent, either in ascending sense or descending one. It is the shortest interval of our musical system and it corresponds to the half of a tone.
5. They are graphic symbols that fix the position of all the sounds in a stave related to a sound fixed before them.
6. In the Italian school system music theory is studied in junior middle schools and in the high school pedagogical section, while professional study of music is entrusted to state music conservatories.

References

Bellingeri P., Dedò M., Di Sieno S., Turrini C., Il ritmo delle forme, Milano, 2001
D’amore B., Elementi di Didattica della Matematica, Bologna, Pitagora, 1999
Spagnolo F., Insegnare le Matematiche nella scuola secondaria, Firenze, La Nuova Italia, 1998